Brownian motion on disconnected sets
نویسندگان
چکیده
Abstract: Motivated by Lévy’s characterization of Brownian motion on the line, we propose an analogue of Brownian motion that has as its state space an arbitrary closed subset of the line that is unbounded above and below: such a process will be a martingale, will have the identity function as its quadratic variation process, and will be “continuous” in the sense that its sample paths don’t skip over points. We show that there is a unique such process, which turns out to be automatically a reversible Feller-Dynkin Markov process. We find its generator, which is a natural generalization of the operator f 7→ 1 2 f . We then consider the special case where the state space is the self-similar set {±q : k ∈ Z} ∪ {0} for some q > 1. Using the scaling properties of the process, we represent the Laplace transforms of various hitting times as certain continued fractions that appear in Ramanujan’s “lost” notebook and evaluate these continued fractions in terms of basic hypergeometric functions (that is, q-analogues of classical hypergeometric functions). The process has 0 as a regular instantaneous point, and hence its sample paths can be decomposed into a Poisson process of excursions from 0 using the associated continuous local time. Using the reversibility of the process with respect to the natural measure on the state space, we find the entrance laws of the corresponding Itô excursion measure and the Laplace exponent of the inverse local time – both again in terms of basic hypergeometric functions. By combining these ingredients, we obtain explicit formulae for the resolvent of the process. We also compute the moments of the process in closed form. Some of our results involve q-analogues of classical distributions such as the Poisson distribution that have appeared elsewhere in the literature.
منابع مشابه
Boundary Harnack Principle for Subordinate Brownian Motions
We establish a boundary Harnack principle for a large class of subordinate Brownian motion, including mixtures of symmetric stable processes, in bounded κ-fat open set (disconnected analogue of John domains). As an application of the boundary Harnack principle, we identify the Martin boundary and the minimal Martin boundary of bounded κ-fat open sets with respect to these processes with their E...
متن کاملHeat kernel estimates for Δ+Δα/2 in C1, 1 open sets
We consider a family of pseudo differential operators {Δ+ aΔ; a ∈ (0, 1]} on R for every d 1 that evolves continuously from Δ to Δ +Δ, where α ∈ (0, 2). It gives rise to a family of Lévy processes {Xa, a ∈ (0, 1]} in R, where X is the sum of a Brownian motion and an independent symmetric α-stable process with weight a. We establish sharp two-sided estimates for the heat kernel of Δ + aΔ with ze...
متن کاملHeat Kernel Estimate for ∆+∆ in C open sets
We consider a family of pseudo differential operators {∆ + a∆; a ∈ (0, 1]} on R for every d ≥ 1 that evolves continuously from ∆ to ∆ + ∆, where α ∈ (0, 2). It gives rise to a family of Lévy processes {X, a ∈ (0, 1]} in R, where X is the sum of a Brownian motion and an independent symmetric α-stable process with weight a. We establish sharp two-sided estimates for the heat kernel of ∆ + a∆ with...
متن کاملHeat Kernel Estimate for ∆ + ∆α/2 in C1,1 open sets
We consider a family of pseudo differential operators {∆ + a∆; a ∈ (0, 1]} on R for every d ≥ 1 that evolves continuously from ∆ to ∆ + ∆, where α ∈ (0, 2). It gives rise to a family of Lévy processes {Xa, a ∈ (0, 1]} in R, where X is the sum of a Brownian motion and an independent symmetric α-stable process with weight a. We establish sharp two-sided estimates for the heat kernel of ∆ + a∆ wit...
متن کاملCFD simulations on natural convection heat transfer of alumina-water nanofluid with Brownian motion effect in a 3-D enclosure
The CFD simulation has been undertaken concerning natural convection heat transfer of a nanofluid in vertical square enclosure, whose dimension, width height length (mm), is 40 40 90, respectively. The nanofluid used in the present study is -water with various volumetric fractions of the alumina nanoparticles ranging from 0-3%. The Rayleigh number is . Fluent v6.3 is used to simulate nanofluid ...
متن کاملOn the Connected Components of the Support of Super Brownian Motion and of Its Exit Measure
Tribe proved in a previous paper that a typical point of the support of super Brownian motion considered at a xed time is a.s. disconnected from the others when the space dimension is greater than equal to 3. We give here a simpler proof of this result based on Le Gall's Brownian snake. This proof can then be adapted in order to obtain an analogous result for the support of the exit measure of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008